Isoform-specific ras activation and oncogene dependence during MYC- and Wnt-induced mammary tumorigenesis.
نویسندگان
چکیده
We have previously shown that c-MYC-induced mammary tumorigenesis in mice proceeds via a preferred secondary pathway involving spontaneous activating mutations in Kras2 (C. M. D'Cruz, E. J. Gunther, R. B. Boxer, J. L. Hartman, L. Sintasath, S. E. Moody, J. D. Cox, S. I. Ha, G. K. Belka, A. Golant, R. D. Cardiff, and L. A. Chodosh, Nat. Med. 7:235-239, 2001). In contrast, we now demonstrate that Wnt1-induced mammary tumorigenesis proceeds via a pathway that preferentially activates Hras1. In addition, we find that expression of oncogenic forms of Kras2 and Hras1 from their endogenous promoters has markedly different consequences for the progression of tumors to oncogene independence. Spontaneous activating Kras2 mutations occurring in either MYC- or Wnt1-induced tumors were strongly associated with oncogene-independent tumor growth following MYC or Wnt1 downregulation. In contrast, Hras1-mutant Wnt1-induced tumors consistently remained oncogene dependent. Additionally, Kras2-mutant tumors exhibited substantially higher levels of ras-GTP, phospho-Erk1/2, and phospho-Mek1/2 compared to Hras1-mutant tumors, suggesting the involvement of the ras/mitogen-activated protein kinase (MAPK) pathway in the acquisition of oncogene independence. Consistent with this, by use of carcinogen-induced ras mutations as well as knock-in mice harboring a latent activated Kras2 allele, we demonstrate that Kras2 activation strongly synergizes with both c-MYC and Wnt1 in mammary tumorigenesis and promotes the progression of tumors to oncogene independence. Together, our findings support a model for tumorigenesis in which c-MYC and Wnt1 select for the outgrowth of cells harboring mutations in specific ras isoforms and that these secondary mutations, in turn, determine the extent of ras/MAPK pathway activation and the potential for oncogene-independent growth.
منابع مشابه
Combined Inactivation of MYC and K-Ras Oncogenes Reverses Tumorigenesis in Lung Adenocarcinomas and Lymphomas
BACKGROUND Conditional transgenic models have established that tumors require sustained oncogene activation for tumor maintenance, exhibiting the phenomenon known as "oncogene-addiction." However, most cancers are caused by multiple genetic events making it difficult to determine which oncogenes or combination of oncogenes will be the most effective targets for their treatment. METHODOLOGY/PR...
متن کاملCyclin-dependent kinase 4 expression is essential for neu-induced breast tumorigenesis.
Previous work has shown that cyclin D1 expression is required for neu- and ras-induced, but not wnt- or c-myc-induced, breast tumorigenesis in mice. Although cyclin D1 binds and activates cyclin-dependent kinase 4 (Cdk4), thereby mediating activation of a program of E2F-dependent gene expression, it has been suggested that the oncogenic activities of cyclin D1 are independent of Cdk4. To determ...
متن کاملChemical inhibition reveals differential requirements of signaling pathways in krasV12- and Myc-induced liver tumors in transgenic zebrafish
Previously we have generated inducible liver tumor models by transgenic expression of an oncogene and robust tumorigenesis can be rapidly induced by activation of the oncogene in both juvenile and adult fish. In the present study, we aimed at chemical intervention of tumorigenesis for understanding molecular pathways of tumorigenesis and for potential development of a chemical screening tool fo...
متن کاملAPC loss-induced intestinal tumorigenesis in Drosophila: Roles of Ras in Wnt signaling activation and tumor progression.
Adenomatous polyposis coli (APC) and K-ras are the two most frequently mutated genes found in human colorectal cancers. In human colorectal cancers, Wnt signaling activation after the loss of APC is hypothesized to be the key event for adenoma initiation, whereas additional mutations such as Ras activation are required for the progression from adenoma to carcinoma. However, accumulating data ha...
متن کاملSoy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells.
Breast cancer risk is highly modifiable by diet; however, mechanisms underlying dietary protection against mammary tumorigenesis remain poorly understood. A proportion of breast carcinomas is associated with deregulation of beta-catenin stability and amplification of c-Myc expression. We recently showed that dietary exposure to the soy isoflavone genistein (Gen) inhibited Wnt transduction in ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 26 21 شماره
صفحات -
تاریخ انتشار 2006